3.11.21 \(\int \frac {x^3}{\sqrt [3]{1-x^2} (3+x^2)^2} \, dx\) [1021]

3.11.21.1 Optimal result
3.11.21.2 Mathematica [A] (verified)
3.11.21.3 Rubi [A] (verified)
3.11.21.4 Maple [A] (verified)
3.11.21.5 Fricas [A] (verification not implemented)
3.11.21.6 Sympy [F]
3.11.21.7 Maxima [A] (verification not implemented)
3.11.21.8 Giac [A] (verification not implemented)
3.11.21.9 Mupad [B] (verification not implemented)

3.11.21.1 Optimal result

Integrand size = 22, antiderivative size = 101 \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\frac {3 \left (1-x^2\right )^{2/3}}{8 \left (3+x^2\right )}+\frac {3 \sqrt {3} \arctan \left (\frac {1+\sqrt [3]{2-2 x^2}}{\sqrt {3}}\right )}{8\ 2^{2/3}}-\frac {3 \log \left (3+x^2\right )}{16\ 2^{2/3}}+\frac {9 \log \left (2^{2/3}-\sqrt [3]{1-x^2}\right )}{16\ 2^{2/3}} \]

output
3/8*(-x^2+1)^(2/3)/(x^2+3)-3/32*ln(x^2+3)*2^(1/3)+9/32*ln(2^(2/3)-(-x^2+1) 
^(1/3))*2^(1/3)+3/16*arctan(1/3*(1+(-2*x^2+2)^(1/3))*3^(1/2))*3^(1/2)*2^(1 
/3)
 
3.11.21.2 Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.11 \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\frac {3}{32} \left (\frac {4 \left (1-x^2\right )^{2/3}}{3+x^2}+2 \sqrt [3]{2} \sqrt {3} \arctan \left (\frac {1+\sqrt [3]{2-2 x^2}}{\sqrt {3}}\right )+2 \sqrt [3]{2} \log \left (-2+\sqrt [3]{2-2 x^2}\right )-\sqrt [3]{2} \log \left (4+2 \sqrt [3]{2-2 x^2}+\left (2-2 x^2\right )^{2/3}\right )\right ) \]

input
Integrate[x^3/((1 - x^2)^(1/3)*(3 + x^2)^2),x]
 
output
(3*((4*(1 - x^2)^(2/3))/(3 + x^2) + 2*2^(1/3)*Sqrt[3]*ArcTan[(1 + (2 - 2*x 
^2)^(1/3))/Sqrt[3]] + 2*2^(1/3)*Log[-2 + (2 - 2*x^2)^(1/3)] - 2^(1/3)*Log[ 
4 + 2*(2 - 2*x^2)^(1/3) + (2 - 2*x^2)^(2/3)]))/32
 
3.11.21.3 Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.12, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {354, 87, 67, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{\sqrt [3]{1-x^2} \left (x^2+3\right )^2} \, dx\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {1}{2} \int \frac {x^2}{\sqrt [3]{1-x^2} \left (x^2+3\right )^2}dx^2\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {1}{2} \left (\frac {3}{4} \int \frac {1}{\sqrt [3]{1-x^2} \left (x^2+3\right )}dx^2+\frac {3 \left (1-x^2\right )^{2/3}}{4 \left (x^2+3\right )}\right )\)

\(\Big \downarrow \) 67

\(\displaystyle \frac {1}{2} \left (\frac {3}{4} \left (-\frac {3 \int \frac {1}{2^{2/3}-\sqrt [3]{1-x^2}}d\sqrt [3]{1-x^2}}{2\ 2^{2/3}}+\frac {3}{2} \int \frac {1}{x^4+2^{2/3} \sqrt [3]{1-x^2}+2 \sqrt [3]{2}}d\sqrt [3]{1-x^2}-\frac {\log \left (x^2+3\right )}{2\ 2^{2/3}}\right )+\frac {3 \left (1-x^2\right )^{2/3}}{4 \left (x^2+3\right )}\right )\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {1}{2} \left (\frac {3}{4} \left (\frac {3}{2} \int \frac {1}{x^4+2^{2/3} \sqrt [3]{1-x^2}+2 \sqrt [3]{2}}d\sqrt [3]{1-x^2}-\frac {\log \left (x^2+3\right )}{2\ 2^{2/3}}+\frac {3 \log \left (2^{2/3}-\sqrt [3]{1-x^2}\right )}{2\ 2^{2/3}}\right )+\frac {3 \left (1-x^2\right )^{2/3}}{4 \left (x^2+3\right )}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{2} \left (\frac {3}{4} \left (-\frac {3 \int \frac {1}{-x^4-3}d\left (\sqrt [3]{2} \sqrt [3]{1-x^2}+1\right )}{2^{2/3}}-\frac {\log \left (x^2+3\right )}{2\ 2^{2/3}}+\frac {3 \log \left (2^{2/3}-\sqrt [3]{1-x^2}\right )}{2\ 2^{2/3}}\right )+\frac {3 \left (1-x^2\right )^{2/3}}{4 \left (x^2+3\right )}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{2} \left (\frac {3}{4} \left (\frac {\sqrt {3} \arctan \left (\frac {\sqrt [3]{2} \sqrt [3]{1-x^2}+1}{\sqrt {3}}\right )}{2^{2/3}}-\frac {\log \left (x^2+3\right )}{2\ 2^{2/3}}+\frac {3 \log \left (2^{2/3}-\sqrt [3]{1-x^2}\right )}{2\ 2^{2/3}}\right )+\frac {3 \left (1-x^2\right )^{2/3}}{4 \left (x^2+3\right )}\right )\)

input
Int[x^3/((1 - x^2)^(1/3)*(3 + x^2)^2),x]
 
output
((3*(1 - x^2)^(2/3))/(4*(3 + x^2)) + (3*((Sqrt[3]*ArcTan[(1 + 2^(1/3)*(1 - 
 x^2)^(1/3))/Sqrt[3]])/2^(2/3) - Log[3 + x^2]/(2*2^(2/3)) + (3*Log[2^(2/3) 
 - (1 - x^2)^(1/3)])/(2*2^(2/3))))/4)/2
 

3.11.21.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 67
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[ 
{q = Rt[(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q), x 
] + (Simp[3/(2*b)   Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1/3)], 
 x] - Simp[3/(2*b*q)   Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] / 
; FreeQ[{a, b, c, d}, x] && PosQ[(b*c - a*d)/b]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 
3.11.21.4 Maple [A] (verified)

Time = 7.64 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.06

method result size
pseudoelliptic \(\frac {-3 \left (x^{2}+3\right ) \left (-2 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (1+2^{\frac {1}{3}} \left (-x^{2}+1\right )^{\frac {1}{3}}\right )}{3}\right )+\ln \left (\left (-x^{2}+1\right )^{\frac {2}{3}}+2^{\frac {2}{3}} \left (-x^{2}+1\right )^{\frac {1}{3}}+2 \,2^{\frac {1}{3}}\right )-2 \ln \left (\left (-x^{2}+1\right )^{\frac {1}{3}}-2^{\frac {2}{3}}\right )\right ) 2^{\frac {1}{3}}+12 \left (-x^{2}+1\right )^{\frac {2}{3}}}{32 x^{2}+96}\) \(107\)
trager \(\frac {3 \left (-x^{2}+1\right )^{\frac {2}{3}}}{8 \left (x^{2}+3\right )}+\frac {27 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2}+36 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+1296 \textit {\_Z}^{2}\right ) \ln \left (\frac {1728 {\operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2}+36 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+1296 \textit {\_Z}^{2}\right )}^{2} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2} x^{2}+72 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2}+36 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+1296 \textit {\_Z}^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{3} x^{2}+504 \left (-x^{2}+1\right )^{\frac {1}{3}} \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2}+36 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+1296 \textit {\_Z}^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+120 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2}+36 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+1296 \textit {\_Z}^{2}\right ) x^{2}+5 \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right ) x^{2}+14 \left (-x^{2}+1\right )^{\frac {2}{3}}-504 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2}+36 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+1296 \textit {\_Z}^{2}\right )-21 \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )}{x^{2}+3}\right )}{4}+\frac {3 \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right ) \ln \left (\frac {-3888 {\operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2}+36 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+1296 \textit {\_Z}^{2}\right )}^{2} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2} x^{2}-72 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2}+36 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+1296 \textit {\_Z}^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{3} x^{2}+756 \left (-x^{2}+1\right )^{\frac {1}{3}} \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2}+36 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+1296 \textit {\_Z}^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+54 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2}+36 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+1296 \textit {\_Z}^{2}\right ) x^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right ) x^{2}+21 \left (-x^{2}+1\right )^{\frac {2}{3}}-1134 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )^{2}+36 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )+1296 \textit {\_Z}^{2}\right )-21 \operatorname {RootOf}\left (\textit {\_Z}^{3}-2\right )}{x^{2}+3}\right )}{16}\) \(477\)
risch \(\text {Expression too large to display}\) \(759\)

input
int(x^3/(-x^2+1)^(1/3)/(x^2+3)^2,x,method=_RETURNVERBOSE)
 
output
(-3*(x^2+3)*(-2*3^(1/2)*arctan(1/3*3^(1/2)*(1+2^(1/3)*(-x^2+1)^(1/3)))+ln( 
(-x^2+1)^(2/3)+2^(2/3)*(-x^2+1)^(1/3)+2*2^(1/3))-2*ln((-x^2+1)^(1/3)-2^(2/ 
3)))*2^(1/3)+12*(-x^2+1)^(2/3))/(32*x^2+96)
 
3.11.21.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.20 \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\frac {3 \, {\left (4 \cdot 4^{\frac {1}{6}} \sqrt {3} {\left (x^{2} + 3\right )} \arctan \left (\frac {1}{6} \cdot 4^{\frac {1}{6}} \sqrt {3} {\left (4^{\frac {1}{3}} + 2 \, {\left (-x^{2} + 1\right )}^{\frac {1}{3}}\right )}\right ) - 4^{\frac {2}{3}} {\left (x^{2} + 3\right )} \log \left (4^{\frac {2}{3}} + 4^{\frac {1}{3}} {\left (-x^{2} + 1\right )}^{\frac {1}{3}} + {\left (-x^{2} + 1\right )}^{\frac {2}{3}}\right ) + 2 \cdot 4^{\frac {2}{3}} {\left (x^{2} + 3\right )} \log \left (-4^{\frac {1}{3}} + {\left (-x^{2} + 1\right )}^{\frac {1}{3}}\right ) + 8 \, {\left (-x^{2} + 1\right )}^{\frac {2}{3}}\right )}}{64 \, {\left (x^{2} + 3\right )}} \]

input
integrate(x^3/(-x^2+1)^(1/3)/(x^2+3)^2,x, algorithm="fricas")
 
output
3/64*(4*4^(1/6)*sqrt(3)*(x^2 + 3)*arctan(1/6*4^(1/6)*sqrt(3)*(4^(1/3) + 2* 
(-x^2 + 1)^(1/3))) - 4^(2/3)*(x^2 + 3)*log(4^(2/3) + 4^(1/3)*(-x^2 + 1)^(1 
/3) + (-x^2 + 1)^(2/3)) + 2*4^(2/3)*(x^2 + 3)*log(-4^(1/3) + (-x^2 + 1)^(1 
/3)) + 8*(-x^2 + 1)^(2/3))/(x^2 + 3)
 
3.11.21.6 Sympy [F]

\[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\int \frac {x^{3}}{\sqrt [3]{- \left (x - 1\right ) \left (x + 1\right )} \left (x^{2} + 3\right )^{2}}\, dx \]

input
integrate(x**3/(-x**2+1)**(1/3)/(x**2+3)**2,x)
 
output
Integral(x**3/((-(x - 1)*(x + 1))**(1/3)*(x**2 + 3)**2), x)
 
3.11.21.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.03 \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\frac {3}{32} \cdot 4^{\frac {2}{3}} \sqrt {3} \arctan \left (\frac {1}{12} \cdot 4^{\frac {2}{3}} \sqrt {3} {\left (4^{\frac {1}{3}} + 2 \, {\left (-x^{2} + 1\right )}^{\frac {1}{3}}\right )}\right ) - \frac {3}{64} \cdot 4^{\frac {2}{3}} \log \left (4^{\frac {2}{3}} + 4^{\frac {1}{3}} {\left (-x^{2} + 1\right )}^{\frac {1}{3}} + {\left (-x^{2} + 1\right )}^{\frac {2}{3}}\right ) + \frac {3}{32} \cdot 4^{\frac {2}{3}} \log \left (-4^{\frac {1}{3}} + {\left (-x^{2} + 1\right )}^{\frac {1}{3}}\right ) + \frac {3 \, {\left (-x^{2} + 1\right )}^{\frac {2}{3}}}{8 \, {\left (x^{2} + 3\right )}} \]

input
integrate(x^3/(-x^2+1)^(1/3)/(x^2+3)^2,x, algorithm="maxima")
 
output
3/32*4^(2/3)*sqrt(3)*arctan(1/12*4^(2/3)*sqrt(3)*(4^(1/3) + 2*(-x^2 + 1)^( 
1/3))) - 3/64*4^(2/3)*log(4^(2/3) + 4^(1/3)*(-x^2 + 1)^(1/3) + (-x^2 + 1)^ 
(2/3)) + 3/32*4^(2/3)*log(-4^(1/3) + (-x^2 + 1)^(1/3)) + 3/8*(-x^2 + 1)^(2 
/3)/(x^2 + 3)
 
3.11.21.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.03 \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\frac {3}{32} \cdot 4^{\frac {2}{3}} \sqrt {3} \arctan \left (\frac {1}{12} \cdot 4^{\frac {2}{3}} \sqrt {3} {\left (4^{\frac {1}{3}} + 2 \, {\left (-x^{2} + 1\right )}^{\frac {1}{3}}\right )}\right ) - \frac {3}{64} \cdot 4^{\frac {2}{3}} \log \left (4^{\frac {2}{3}} + 4^{\frac {1}{3}} {\left (-x^{2} + 1\right )}^{\frac {1}{3}} + {\left (-x^{2} + 1\right )}^{\frac {2}{3}}\right ) + \frac {3}{32} \cdot 4^{\frac {2}{3}} \log \left (4^{\frac {1}{3}} - {\left (-x^{2} + 1\right )}^{\frac {1}{3}}\right ) + \frac {3 \, {\left (-x^{2} + 1\right )}^{\frac {2}{3}}}{8 \, {\left (x^{2} + 3\right )}} \]

input
integrate(x^3/(-x^2+1)^(1/3)/(x^2+3)^2,x, algorithm="giac")
 
output
3/32*4^(2/3)*sqrt(3)*arctan(1/12*4^(2/3)*sqrt(3)*(4^(1/3) + 2*(-x^2 + 1)^( 
1/3))) - 3/64*4^(2/3)*log(4^(2/3) + 4^(1/3)*(-x^2 + 1)^(1/3) + (-x^2 + 1)^ 
(2/3)) + 3/32*4^(2/3)*log(4^(1/3) - (-x^2 + 1)^(1/3)) + 3/8*(-x^2 + 1)^(2/ 
3)/(x^2 + 3)
 
3.11.21.9 Mupad [B] (verification not implemented)

Time = 5.30 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.25 \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\frac {3\,2^{1/3}\,\ln \left (\frac {81\,{\left (1-x^2\right )}^{1/3}}{64}-\frac {81\,2^{2/3}}{64}\right )}{16}+\frac {3\,{\left (1-x^2\right )}^{2/3}}{8\,\left (x^2+3\right )}+\frac {3\,2^{1/3}\,\ln \left (\frac {81\,{\left (1-x^2\right )}^{1/3}}{64}-\frac {81\,2^{2/3}\,{\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{256}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{32}-\frac {3\,2^{1/3}\,\ln \left (\frac {81\,{\left (1-x^2\right )}^{1/3}}{64}-\frac {81\,2^{2/3}\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{256}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{32} \]

input
int(x^3/((1 - x^2)^(1/3)*(x^2 + 3)^2),x)
 
output
(3*2^(1/3)*log((81*(1 - x^2)^(1/3))/64 - (81*2^(2/3))/64))/16 + (3*(1 - x^ 
2)^(2/3))/(8*(x^2 + 3)) + (3*2^(1/3)*log((81*(1 - x^2)^(1/3))/64 - (81*2^( 
2/3)*(3^(1/2)*1i - 1)^2)/256)*(3^(1/2)*1i - 1))/32 - (3*2^(1/3)*log((81*(1 
 - x^2)^(1/3))/64 - (81*2^(2/3)*(3^(1/2)*1i + 1)^2)/256)*(3^(1/2)*1i + 1)) 
/32